SPACE WEATHER AND **APPLICATIONS - GRADUATE** CERTIFICATE

This certificate provides students with interdisciplinary skills in the field of space weather of both fundamental processes in science and practical applications to space-based and ground-based technology.

This certificate is available to degree-seeking and non-matriculated students. Additional certificate information can be found on the department's Space Weather and Applications Certificate (https:// www.colorado.edu/aerospace/current-students/graduates/curriculum/ certificate-programs/space-weather-and-applications/) webpage.

Distance Education Option

Students can take individual courses toward a master's degree or graduate certificate through distance education (online). For more information, connect with the individual graduate program directly.

Requirements

Admission Requirements

- · Completed undergraduate degree from an institution accredited by an agency recognized by the U.S. Department of Education or its equivalent.
- · Undergraduate courses in calculus, linear algebra and differential equations; two semesters of undergraduate calculus-based physics; and at least two semesters of upper-division undergraduate courses in engineering or physics.
- · Ability to program at a level that will enable successful completion of graduate course assignments.

For more information, degree-seeking students may visit the AES Certificates (https://www.colorado.edu/aerospace/academics/ graduates/curriculum/certificates/) webpage; nondegree-seeking and non-matriculated students may visit the AES Certificates & Continuing Education (https://www.colorado.edu/aerospace/admissions/graduates/ degree-programs/certificates-continuing-education/) webpage.

Required Courses and Credits

Students are required to complete 12 credit hours total for this certificate, including ASEN 5335, two courses from the Tier 1 electives list and one additional 3-credit course from the Tier 2 electives list. At least one course must be outside of the student's home department if pursuing a graduate degree.

Grades of B or higher are required for fulfillment of requirements and certificate award. Students also pursuing other graduate certificates may not use the same courses to count for both certificates.

Code	Title	Credit Hours		
Required Course				
ASEN 5335	Aerospace Environment	3		
Tier 1 Foundational Electives ^{1,2}				
Choose two:		6		
ASEN 6050	Space Instrumentation			
ASEN 6365	Lidar Remote Sensing			

Тс	otal Credit Hours		12
	ATOC 5500	Special Topics in Atmospheric and Oceanic Sciences ²	
	ASTR 7500	Special Topics in Astrophysical and Planetary Sciences ²	
	ASTR/ATOC/GEOL 5830	Topics in Planetary Science	
	ASEN 5519/6519	Special Topics	
	Selected Topics ³		
	STAT 5010	Statistical Methods and Applications II	
	STAT 5000	Statistical Methods and Application I	
	or STAT 5250	Data Assimilation in High Dimensional Dynamica Systems	I
	APPM 5510	Data Assimilation in High Dimensional Dynamical Systems	
	ASEN 6055	Data Assimilation and Inverse Methods for Earth & Geospace Observations	
	Data Science		
		Intermediate Plasma Physics	
	Electromagnetics &	Plasma	
	ATOC/ASTR 5560	Radiative Processes in Planetary Atmospheres	
	ASTR 5120	Radiative and Dynamical Processes	
		s & Atmosphere Coupling	
	ASTR 5780	Space Sciences	
	ASEN 5440/	Mission Design and Development for	
	ASEN 5158	Space Habitat Design	
	Design & Instrumen	tation	
	ASEN 6265	Fundamentals of Spectroscopy for Optical Remote Sensing	
	ASEN 5090	Introduction to Global Navigation Satellite Systems	
	ASEN 5016	Space Life Sciences	
	Applications		
	noose one:		3
Ti	er 2 Concentration/	3	
	ATOC 5235	Introduction to Atmospheric Radiative Transfer and Remote Sensing	
	ATOC 5050	Atmospheric Thermodynamics and Dynamics	
	ASTR 5300	Introduction to Magnetospheres	
	ASTR 5150	Introductory Plasma Physics	
	ASTR 5140	Astrophysical and Space Plasmas	

Total Credit Hours

- 1 Students are required to meet each course's prerequisites, though exceptions can be made by course instructors.
- 2 If cross-listed in the student's home department, a course cannot count as the outside course within the certificate for students pursuing a graduate degree. 3
- For courses with rotating topics, a particular offering must be on a topic relevant to space weather in order to count for this certificate. These courses will need approval from the program director.